

ANL Pixel Module Activities

Jessica Metcalfe *Argonne National Laboratory*

Overview

Status Report:

- Glue studies
- Wire bonding
- · Quad module flex
- Test box
- HVCMOS
- Test beam

Glue Studies

Investigating different glue methods:

- Automatic glue dispenser
 - Program glue line/dot configuration
 - Dummy glass and kapton
- Double-sided epoxy tape (used in IBL)
 - More challenging for wire bonding, can rework

Plans:

- Pull/shear tests
- irradiations

Wire bonding

- · First dummy sample wire bonded
- Some difficulties encountered
 - · Wrinkles in flex cable

@ SiDet Fermilab until we purchase a new wire bonder

Quad Module Flex

- Originally ordered 30 flex cables
- Used most in I-beam stave mock-up at SLAC
 - Work done by Matt Zhang, ASC fellow UIUC
- · Ordered 100 more
 - Mechanical mock-ups
 - Let me know if you'll need dummy modules
 - Glue studies
 - Testing the design
 - Plan to do next iteration of the design early next year
 - Fix any issues
 - · 2 layers
 - · HV hole
 - · LV power tab
 - Smaller connector

Test box

Test box is almost ready

- Cold plate with vacuum suction
- Nitrogen flow through the box
- Light tight
- Removable service plates

Adapter card

- Connect between quad module flex and read-out systems
- Design finished
- Sent for fabrication soon

Done by Matt Zhang (ASC fellow), Todd Hayden (ANL electronics)

HVCMOS

Plan

- Get involved with testing the AMS HVCMOS design
- Do gamma irradiation studies
- Organize test beam at Fermilab

Test beam @ Fermilab

Fermilab test beam: http://ftbf.fnal.gov/

- Available almost anytime next year
- Pixel telescope and support available
- · climate controlled area, gass available
- Primary beam is 120 GeV protons
- Secondary beam can be pions, muons, or electrons down to 1 MeV
- · 1-300 kHz

Backup